Web Analytics Made Easy - Statcounter

خبرگزاری آریا-یک روش جدید برای ایجاد آلیاژ‌های آنتروپی بالا با پایداری حرارتی قابل توجه، ارائه شده است که می‌تواند محصولات با خواص ویژه برای استفاده در صنعت را ارائه دهد.
به گزارش خبرگزاری آریا، از نانوذرات برای تولید مواد با استحکام زیاد برای کاربرد‌های ساختاری استفاده شده است. اما این نانوذرات اغلب از نظر حرارتی ناپایدار هستند و در معرض دمای بالا، سطح آن‌ها زبر می شود.

بیشتر بخوانید: اخباری که در وبسایت منتشر نمی‌شوند!


یافته‌های پژوهشگران دانشگاه سیتی هنگ کنگ (Cityu) نشان داد که افزودن کبالت به آلیاژ‌های آنتروپی بالا (که به آن آلیاژ‌های شیمیایی پیچیده نیز گفته می‌شود) می‌تواند از زبری نانوذرات در دما‌های بالا جلوگیری کند.
این راهبرد مسیر جدیدی برای طراحی آلیاژ‌های شیمیایی در دمای زیاد ارائه می‌کند که موجب افزایش پایداری به منظور استفاده در زمینه‌های مختلف مهندسی می‌شود.
این فناوری با تقویت نانوذرات و ایجاد آلیاژ‌های تقویت‌شده با نانوذرات، به‌عنوان یک راهبرد قدرتمند برای ایجاد موادی با خصوصیات ساختاری و عملکردی منحصر به فرد در نظر گرفته می‌شود. این امر به طور گسترده‌ای برای نوآوری مواد با استحکام زیاد ، مانند آلیاژ‌های پیشرفته آلومینیوم، فولاد‌ها و سوپر آلیاژ‌ها استفاده شده است.
محققان این پروژه نشان دادند افزودن کبالت به طور کنترل‌شده، موجب تشکیل آلیاژ‌های آنتروپی بالا می‌شود، و به‌طور قابل توجهی از زبری نانوذرات در دما‌های بالا تا 1000 درجه سانتی‌گراد جلوگیری می‌کند.
دکتر یانگ تائو در بخش علوم و مهندسی مواد (MSE) گفت: «یافته‌های ما یک مسیر بسیار مؤثر برای طراحی مناسب آلیاژ‌های با کارایی بالا با خواص حرارتی عالی و مکانیکی برای کاربرد‌های نیازمند به دمای بالا هموار می‌کند.»
در این مطالعه، از طریق ترکیبی از روش‌های مختلف و شبیه‌سازی‌های نظری، این تیم تحقیقاتی دریافتند که کبالت می‌تواند به طور موثری اثر انتشار کُند شبکه منحصر به فردی را در سیستم آلیاژ نیکل-کبالت-آهن-کروم-آلومینیوم (NiCoFeCrAlTi) ایجاد کند. آن‌ها دریافتند که افزایش غلظت کبالت ، می‌تواند به طور قابل ملاحظه‌ای اندازه متوسط ذرات را کاهش داده و باعث افزایش پایداری حرارتی این نانوذرات شود.
علاوه بر این، افزودن کبالت منجر به کاهش قابل توجهی در ضرایب interdiffusion کلیه مواد تشکیل‌دهنده اصلی آلیاژ‌های آنتروپی بالا، به ویژه آلومینیوم، در دمای 800 درجه سانتی‌گراد می‌شود.
راهبرد عرضه شده توسط این تیم می‌تواند به نانوساختار‌های بسیار پایدار در سیستم‌های آلیاژ آنتروپی در 800 تا 1000 درجه سانتیگراد برسد.

منبع: خبرگزاری آریا

کلیدواژه: نانویی آلیاژ ها

درخواست حذف خبر:

«خبربان» یک خبرخوان هوشمند و خودکار است و این خبر را به‌طور اتوماتیک از وبسایت www.aryanews.com دریافت کرده‌است، لذا منبع این خبر، وبسایت «خبرگزاری آریا» بوده و سایت «خبربان» مسئولیتی در قبال محتوای آن ندارد. چنانچه درخواست حذف این خبر را دارید، کد ۳۶۴۵۲۹۳۸ را به همراه موضوع به شماره ۱۰۰۰۱۵۷۰ پیامک فرمایید. لطفاً در صورتی‌که در مورد این خبر، نظر یا سئوالی دارید، با منبع خبر (اینجا) ارتباط برقرار نمایید.

با استناد به ماده ۷۴ قانون تجارت الکترونیک مصوب ۱۳۸۲/۱۰/۱۷ مجلس شورای اسلامی و با عنایت به اینکه سایت «خبربان» مصداق بستر مبادلات الکترونیکی متنی، صوتی و تصویر است، مسئولیت نقض حقوق تصریح شده مولفان در قانون فوق از قبیل تکثیر، اجرا و توزیع و یا هر گونه محتوی خلاف قوانین کشور ایران بر عهده منبع خبر و کاربران است.

خبر بعدی:

راه‌حل انقلابی در مهار گرمایش زمین: تبدیل مستقیم و پاک کربن دی‌اکسید به سوخت

به گزارش خبرآنلاین، محققان دانشگاه میشیگان که نتایج پژوهش خود را در مجله ACS Catalysis منتشر کرده‌اند، استفاده از کبالت‌فتالوسیانین (cobalt phthalocyanine) را به‌عنوان کاتالیزوری برای تبدیل کربن دی‌اکسید به متانول از طریق چند مرحله واکنش موردمطالعه قرار دادند. مرحله اول کربن دی‌اکسید (CO2) را به مونوکسید کربن (CO) و مرحله دوم CO را به متانول تبدیل می‌کند.

این رویکرد، روشی پایدار را برای کاهش انتشار گازهای گلخانه‌ای و تولید انرژی بدون کربن دی‌اکسید مازاد ارائه می‌دهد. دانشمندان مدت‌هاست در تلاشند تا راهی برای تبدیل شیمیایی CO2 به سوخت‌هایی مانند متانول بیابند. متانول می‌تواند به‌طور بالقوه برای تأمین انرژی خودروها به روشی سازگارتر با محیط‌زیست مورداستفاده قرار گیرد.

البته پیش‌ازاین، تبدیل کربن دی‌اکسید به متانول در مقیاس صنعتی اتفاق افتاده بود، اما آن فرآیند از نظر زیست‌محیطی پاک نبود و تلاش‌ها برای انجام بزرگ‌مقیاس این تبدیل از طریق فرآیندهای الکتروشیمیایی، چالش‌های بزرگی به همراه داشت.

کبالت‌فتالوسیانین مانند یک قلاب مولکولی برای مولکول‌های CO2 یا CO عمل می‌کند. آرایش (هندسه) این مولکول‌ها در اطراف فلز کبالت بسیار مهم است، زیرا تعیین می‌کند که هر مولکول گاز با چه شدتی به هم متصل می‌شود. پژوهشگران متوجه شدند که مشکل، اتصال بسیار قوی‌تر کبالت‌فتالوسیانین به مولکول‌های CO2 در مقایسه با مولکول‌های CO است. به همین دلیل وقتی CO در مرحله اول تولید می‌شود، قبل از اینکه بتواند به متانول تبدیل شود، با مولکول CO2 دیگری جابه‌جا می‌شود.

محققان با مدل‌سازی محاسباتی پیشرفته حساب کردند که اتصال کبالت‌فتالوسیانین به CO2، سه برابر محکم‌تر از مونوکسید کربن است. این اندازه‌گیری‌ها با بررسی تغییرات سرعت واکنش در مقادیر مختلف CO2 و CO نیز تأیید شد.

محققان نشان دادند که تفاوت به نحوه تعامل الکترون‌های کاتالیزور با مولکول‌های CO2 و CO مربوط می‌شود. برای حل این مشکل، آن‌ها پیشنهاد داده‌اند تا کاتالیزور کبالت‌فتالوسیانین به‌شکلی بازطراحی شود که نحوه تعامل آن با CO تقویت شده و میزان اتصال آن به CO2 کاهش یابد.

رفع این مانع می‌تواند راه را برای استفاده از کاتالیزورهایی مانند کبالت‌فتالوسیانین برای تبدیل پاک، مؤثر و بزرگ‌مقیاس CO2 به سوخت متانول هموار کند.

منبع: Phys.Org

۵۴۵۴

برای دسترسی سریع به تازه‌ترین اخبار و تحلیل‌ رویدادهای ایران و جهان اپلیکیشن خبرآنلاین را نصب کنید. کد خبر 1904012 ذوالفقار دانشی

دیگر خبرها

  • قبل از خرید، مهمترین تفاوت نبشی پرسی و نبشی فابریک را بدانید!
  • همه چیز درباره رنگ پلی اورتان؛ ویژگی‌ها و کاربردها
  • راه‌حل انقلابی در مهار گرمایش زمین: تبدیل مستقیم و پاک کربن دی‌اکسید به سوخت
  • چطور باتری های لیتیومی صنعت خودرو را دگرگون کردند
  • سیب و زنجیره تولید وابسته به آن از ویژگی‌های منحصر به فرد سمیرم است
  • قبل از خرید بهتر است تفاوت تسمه با ورق فولادی را بدانید!
  • چتر فناوری روی محصولات بهداشتی باز شد/معرفی ۱۳ محصول نانوسلامت فناورانه
  • وزیر صنعت: برای تولید اتوبوس نیازمند خارجی‌ها نیستیم
  • توسعه‌یافتگی در جامعه با اتصال دانشگاه و صنعت محقق می‌شود
  • مقام دوم گردش مالی در کشور برای صنعت غذایی